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COMPARISON OF FOUR METHODS FOR AGGREGATING
JUDGMENTS FROM MULTIPLE EXPERTS

by
Jane M. Booker and Richard R. piCd

Statistics Group, MS F6(K)
Los Alamos NationalMmratory, Los Alamos NM 87545

I. INTRODUCTION

This reportdcsfxibcsa study that compares four different methods for aggregating
expmtjudgment data given fivn multipleexperts. llwsc experts need not be a random
sampleof availableexperts. ‘he experts estimate the sanw unknownparameter value (e.g.,
a failuremmor a potability). Their estimates need not be a representativeset of sample
values from an underlyingd.istibution whose nmn is an unknownparameter, 0.
However,it is desired to combine the experts’estimates into a single aggregationestimate
m reflect their amount of availablehowlcdgc abcmtthe unknownparameter.

Manydifferent aggrcgahoncstimams and methods have been mposcd in tic literature
J(Meyer and Booker, 1991). However, few have been used, test , or compared. Four

different methcxlsare chowt fcxthis study which have been used or proposed for usc in
NRC studies. W setrepresents a cross section of the various types of methods,

The results of this study do not indicate the use of any one method over another.
Methais

%
uiring minimal decision maker input arc sensitive to the biases in the experts’

I’cspmscs, these methods, there is no ndianism to adjust the exps’ cs!imatcs to
account for any known biases in the expert population such as optinism or pessimism,
The rcsuks of this study iruiicatethat these mctheds tend to perform pmriy in all but the
most ideal cases. Conversely,mctlds rquirmg extensive decision maker inputs arc
sensitive to misspccification, ‘IlwscnWhods perform poculyunless complete info;”mation
is known abut all the experts, That is, the decision maker’sinput parameter must nearly
qual the ac,ual values.

This rcpost is dividd into eight sectionsas follows. The four nmhods arc dcscri~ in
t,hcsecond section. The third sectioncontains a dcwription of the example from NUREG
1150that is uwd in tk study. The fourth section is a prcliminaxyexaminationof chefust
aridmost complex nwtlw.d,This investigationexamines the different parameters and
includesan investigationon the effcas on he aqgrcgationparametersof tie correlation
structure. ‘fo corttpamthe rdmd.s, an undcrlymgset of actual paramtcr wdues was
established. The set is dcscxibd in the fifth section, The sixth and sc ath sections
describs the design of the computationalruns nude in the sensitivitystudy md in the
simulations, The sensitivitystudy consistsof a set of calculaticmsthat cmnparcs h,rce of
the rncthals w on similar cases. Two simulationsmns arc desi ncd to investigatethr

fsecondand fourth methods in scpsrate analyses. Section W] en s with a description of the
measures @ to com arc the rrdods with a set of actual values. The results of tie runs

Yarc given in SectionV 11w!wrethe performanceof each method is evaluated using the
nxasurcs of com arisen relative to the actual valuesestablished. The final ‘icc!io’lincludes
the conclusions(la wn from the results and a discussionof recommended uses of [ne
methods, The Appendixcontains the notation used in the report.



IL DESCRIPTIONS OF THE FOUR METHODS

The Lindley and Singpumalla (LS) Method

Lindlcy aid Singpurwal.la(1986)proposeda method fcxaggregatingexpert estimates
basedon ncmaal thany. lle particularestimates they cite are cmnponentfailure rates, A,
having lognormaldistrihhons. Therefore, the quantity, O= h(A), is noxma.llydisrnbuted,
Eachexpert (i) states his estimaes for the mean (mi) and standarddeviation (~1)of his
subjectiveunderlying(normal)distributionof o. They assure that there is a decision
maker who will aggregatethese means and variancesaccording to his knowldge of the
ex~. He must have sufficientinformaticmto estimate four d.i.ffemntparameters for each
expert such that the cx~’s stated nran (standarddeviation) will be adjusted (weighted) in
a prcdetemind directmn. This direction is detemined by the decision maker, and there
am no guamnteesthat this detumi.nationis in the ccm’cctdirection (towardthe actual mean).

‘l%eparametersa, ~, Y,and p represent a location adjustment parameter for the expert’s
mean, a scaling paramtcr for the mpert’s mean, a waling parameter for the ex~rt’s
standarddeviation, and the correlation among the experts, respectively. Experts are subject
to manydifferent kindsof ‘biasesthat affect their estimates. lle scalingand location
adjustmentparameterscan be used to counter some of these biases (Kahneman, Slovic, ai-
Tversky, 1982). Imcationadjustmentsare useful to counter the human tendency to
underestimateprobabilitiesof uncommonevents, to counter optimism or pessimism, snd to
counter rhe tendencyto overestimatethe Cx2currcnceof extremely rare events. Scaling
adjustmentsarc useful to counter the temiencyof humans to underestimateuncertaintyznd
variability (Li.r.dleyand SingptrwaU~ 1986).

The decision maker’sfma.1estimate of 0 is normalwith mean

andstandarddeviationof that mean

whereuiJare the clertmts of the matrix Z-I such that the matrix z has off diagonalelements
Oi”= ~ij(Uii, Ujj) In ad chgonal elementsail = (Ms#, This result is developed and labeled
d eomm 1 m their papa,

The final estimmcis in the gencnd formof a weightedmcm. The other parameters
combinr as weights fa the ex

r
‘mean csh.atcs. This saucture is impommt later on in

comparing the u mdlcd to wei htcd mean methcd.
!Three assumptions are required or his theorem. Firs~ the expms’ estimates of the

stimdmddeviation, (q), must provide no informationon O. Second, the decision maker’s
prior distribution on 0 is effectivelyconstang implying that the decision maker’sknowledge
of J is weak prior to viewing the experts’estimates. Third, the distribution of the experts’
mems, ccmlitioncdcm‘theirSUW srandad deviations, is a multivariatenormal with euch
mean, mj, having a mean flje + q, stadard deviation of Ujsj, Md co~lation Pij ktwec!~ IHI

and mj. In addition, because the correlationsand the Yvalues are determinedby the
decision maker pria to or without knowledgeof the experts’estimates, the z mut.tixmtiy
not “Xinvcnible. This methodrequires that it be invetible.
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difficult to satisfythe namality assumptionsin applying this method to
real ‘:. ~ often what~ak data exists (includingexpert estimates)does not
- -v (m ~ty). Expert estimatesofkn *a& rnukimdal
chsmlnmorut(Bookerand Mew, 1988),and it can b-Cult to jusdfy any distribution
~whenthcze are fivedata~ints orless. Lindky and Singputwdlacite one of the few
cases wkc ●@normal distributionmay apply. It should be noted that the simulateddata
chmm fm this study followstheccxrcctdistributionassumption,therefore, providing a
bestcasefw the IAmethcd Theeffectof nonnamality mayor maynotbsevere
Ckawkk sensitivity to this assumptionis m examined in this study. other features of
the rAmd regarding its use amdiscuasai Mow.

This mctbfxiddmsaes the issuesof codation a!mng qxrts and characterizing
uncenainty in the experts’estimates. Many methods, including some used in this study, do
not consider the correlationissue. One reason fcr that is becauseccmelationsamong
experts are difikdt (ff impossible)to estimate very we~ Such estimation l’C@CSan
extensive and contmllcd studyof theexperts, how they solve problems, and how they
intcratz Swh stalks arc usually M ~dcal. On the otkr han4 most recent methods
imXpmtc s4mMcstimationcWhandlingofuncaminty. h h LS rtdmd uncertainty in
the eipcrts’ cdrnatcs is chmclmzd “ 6ythe varianceis2, provided by the ex

~,ti-k-tmwbwwoftidinput~H ui.rJ&rn&
decision maker. In speaking with Singpurwalk we found that he was unaware of any
actualuse to&&. In Mition, a l.ikratumsearch indicatedfive citationsof the LS paper but
no exampks d actuaJu=. This was disparaging because there was no guidance on how
decision mahs shotddestimate the four sets of . In our experience (Meyer and
Book, 1991),decision rnskcrado not have the Wledgerequired to accurately estimate
these pammtem b*gtisu~tiq mf-W*&a*tofvdues fordtie
pammeters using little or no infmmation. In addition, the results of this study will indicate,
conclusionsCMbe very sensitive to the decision makefs parameters.

The Self Weights (SW) Method

The sumttl rmtld was previouslyusal in applicationsinvolvingaggregatingexpert
estimates to detumitw probabilitiesand charwtmistics of seismicevents (Bernreuter,et al.,
1989). llw aggregationcadtnator is a weigki man of theestimatesbiven by the expctts.
The weights arc cktcrminal by the experts themselvesand represent the expats’
evaluations of their own levcisof expertise It is not qqxwent fmrn the rc

r
whether or

n~ hk W!fCVdUSdCX’tk ~ CU1~idCIhLhCCX@8 kvel I’ddve m Co -gu- m
dative to ~ abdutc de. At any rate, the weightsuc chosen from a numericalscale
of intc$crs, 1=10,where 10is the highestlevel of expertise. The analystthennormalizes
the weights fw the experts,

‘Ilierepatdid tW~anycomea
F

“ngvariance for this weightedrtmn.
CCmsmpntly, * rmst bask question interest (wiwtheithe resulting interval fotmed
fkornthe a gad man ml aggregati uncataintics cows 0) cannot be evaluated. In

%&whe Sectkm cmmodifyingthe mcthais for k simulationstudy, the wuinnce for the
wei htcd ~ is foundbyusing the statistical thwry.

h is methal lscks several featuresof the fmt methcd. Thereisno variance specified
for the aggregationestimator, there is m trmhanis.n for handlingexpss correlation, and
there is no provisionrnde for the ex

F
to provide uncertaintieson their estimates.

Unlike the fw nthai, this rne od makes no assumptionson the data, und the annlyst
d=s not have to estirnsmany parametersto b the as~gadon.

It is easy to criticim the usc of the self weightsin this mcthcd. What little evidence
exists supports the cognitive dmry that experts cannot evaluate themselves(or even
odmrs) very well m consistentlyand that different experts’ratings do not agree very well
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(Kakman, et al., 1982). Even one of the report authuR$dmittcd that asking experts for
self weights was not a good idea (Mensing, lWO).

The Equal Weights (EW) Meth~

llw M method was taken* two reports (McCsnn, et al., 1988; McGuirc,et al.,
1989)by the Elect&Power Rcsemchlnstitutc ~~. whichUd e- estimates m
chrwt@Vm seismiccvenr and pmbdilities. In the fiit mm a weightedman was
chosen f= the aggregationestimator. Because the autkm felt that the weights were chosen
inanarbiaary manner, thesccmldrcport recomuEndcd weightingall experts the same.
Tlmrefom,this method is used as an equal weights method.

Wstamladdevkion usodintherepat isacompoaimfcxmula
T

senting tvm
sourcesof variation. The first is an average of the vsritues Vidcd the experts. The
second is the variationof among expxts’ estimates. The z variamx is the sum of these
two sources

This methd lacks sane of the features of the first rncthai ~ is no mhanism for
handlingex

J&
cmdation. No locationm scak adjustmentsof the experts’estimates

(similar to M rmlmd) are pssible. The expmts ~vide estimates of uncertaintyon
their mean estirmtes tlmugh fhe valuesof @. However,this ma.hod does not require
assumptionson the dat&and the analystdoes na havetoestimateany parameters to do the
aggregation.

Equal weights is a ccxmncdy used methai (Seaver, 1978;Winkkr, 1986). The
rationalizationfw its uSCstems 6om the usual state of insufficientknowlalge necessary to
specify unequal wei~hts. Because this method has M some usage, an equally weighted
mean 1sa ga%lcandate for inclusion in this stdy.

The Method of Empirical Distributions (ED)

A final ttmthal was died to the study that was W on aggrc sting distributions
providedby the exprts rather than aggregatingsin k estimates.

tLuncemln
A distributions are

elicited from the experts thenwlves and
r

nt ‘ ty that the experts have
concerning the quantity beingestimated. elicited values can b mnges, percentiles,
mans, w my set of vaks that can b translatal into a cumulativeempirical probability
distribution.

WI?
IiCationof this type of elicitation is found in the NUREG 11SOstudy (US

NRC, 19 ), and this was the ndmd used on the exampk (Section Ill) chosen for this
stwly. Other Klvocatesof this

T
of approachare Me m and Booker(1991),

LAn sdvantageof this apprcw is that an entire distri tioii is obtained that rcpresems
uncertaintywithcwtassummga particulardistributicml fofm ad without relyingon
varianceestimates. Studies have shownthat expts arc ma comfortable and more adept
at cshmating ranges and Percentilesthan they are at variances(Meyer and Booker, 199I),
The analyst uses simuhmnntechniquesto combine the disuibutions, avoidinq the
difficulties of estimating paramtcrs. However,if dwdistributionsare combined using a
weighting whemc, the analystmust cktcrminc what wei@usto use, Another choice that [hc
malyst makes is the typ(s) of aggregation estimates to use. ?hc mean,median,variance,
and Percentilesof the ~gregation disbibution can lx used to summarizethe data, Some
analystspfer the mdmn as m aggregationestimatcr becauseexperts often estimate a
median mhcr thana meanof their distribution of vatues (Kalmemsn,et al., 1982), This
method allows the use of the mdian as an aggregationestimator. Therefore, this method is
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rclaciwly to usc fcwImththe expcmsand dw analysLit requires no assumptims on the
+&t&it ‘ different typ of ~gtion es- and it chamctmi~ uncertainty.

A dmdvantage is hat no nmchammnis redly availableto wmunt fa cmrelation
armingexpcmsa any lczadon and scak adjustmentscmtheir esdmaus. However, it is
possibk to irwllnk CalCukm“ s in the aggregationprccess (in * Sinlld.ation)to inclldc
camclaticm.hxhcr d.kdvanmge is that the vwious values @rcentiles, ranges, etc.)
ckitd li’omthe experts must have the ape intcxprctalmn. If an expert is unfamiliar

%E%aHq-cml,a%%
ntilesandisaskfdto “vc5%tI.k and95%tik value, hemay hgiving arange

cr 40% interval. Exlrcmccare in the elicitation
_iSmquircd toensu.rcthat thecxpmispfupuly mmruahlg his empirical
dsmbutmn of values.

IIL THE EXAMPLE USED IN THE STUDY

l%e NIJREG ll~tiyetititi mytistimdtiple -
r

regarding many
physical pammetm and events. Bccauw the Lindky and SingpuIW a U) method was
themaacanplexm ethdanexnmpled amsctwassou tthaffitinto it.sstructufe.
Simplikl suucaucs earmpdm “ gtotheotkrm rid! can k viewed as “subsets”of a
mrc cunpktc spifhrim. An exampk was necdd that estimated a single target
quanti , pcfcrably a faihm rate, that was disuibuted nmmally or lognormdly. An

Kexarnp that used infomlation from severalexperts was desired Also, the experts had to
-- estimEsofumcrminty cmthcirfai.lltrcrafeseidlcx inthcformof
distributiollq m

r
ntil~ m smmiarddeviations. LnA

v
“xc, Volum 2 @f

NWWGK3145 , (Whcekr, et al., 1986),the failure rate or a spccifw valve rupture
sccnlilioatthc Scquoyahplantww3Cstimmdbyfivecx

r
Tlw experts provided

Cumulativedish’itnltionfunctkmsand pecenti.k values m the log (Imsc 10)of this failure
rate, A.

Two conversionswere neccasaxycmthis mw data to make it applicable to the IS
method. FmL two experts provkkd escima&sin terms of faihn=dye.ar,and the tier three
used failureQlmur. All were eorwrtd to failurcskmr. kind, the raw data was in the
form of b 10A, ~ ~ method uses in(A). ~fcuc, rhcdata was trandated to this new

Llogarithm . Table 1gives scxnepzrcmtiks and their translations.

TABLEI
PERCENTILEESTIMATESFROM EXPERTS’DISTRIBUTIONS

.25.9
-25,3 -25.2 -21.8

-22.3
-20.5 -19.2

-22.9
-19. I

-20.9 -16,6
-17.7 .~-J,7 -17.8

-18,4 -24.1
-20,6
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Using these ~d.ks ad nanud thaory, the man and stadard deviation were
estimatedas given in Tabk IL

TABLEJI
~ERTS’ ESllhf./l’rES FROM THEIR DISTRIBUTIONS

-20.5 1.3
-22.s 1.4

E -23.8 1.4
D -22.9 0.7
E -19.2 1.6

A graphof theexperts’distributionsis givenin I@urc 1. The values used in this study
arc basal upon thevalues in Tabks Iarujl.L Itisnotunccmmm to fti that the Cxpcrts’

e
rmansarcsi “ antly far apart hm -h other, when gauged by their stated standard
dcviadas. possibk explmation of this effm is the commonlyencounteredhuman
bias of underestimatingurmrtahty (Kahncrnan,et al., 1982)which appears in
miss@ilcation of pexcmdlcs (an estimated%2??~tik value should have beena 70th
pxccndk). Another possibleexplanationis that the large separations in the means arc due
to genuinedifferences in opinions.

1
M 1
031

// 1/
//

I
‘A

‘B
-c
-D
+E

4*1~
-30 -28 -26 -24 -22 -20 .18 -16 -14

~urr 1: Experts’Emplrkal Dktributbns
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W. PRELIMINARY INVESTIGATION OF THE LS METHOD

Inveatigatin# the Paranwtera

BccauSCthc&llmhodhas*mostcmnplcxpall lmetcrstnl cturc,aninitial
investigationwas *to dcnmmnc the generaleffectson the aggrcgatb H and.

7
changes in the tcrs. Itisrmtedthat using thermtmandsumdard

= Cmmllas(ihXIl 1)prduccs the following gcmal relationships:
l) LfaUusarcidcn~ incrca ~ga&reasesB (thcaggregation man) bythat

~olltdonotaffcctu.
2) Changes in fItitK)thp and Ubythatamount. Ifallfk arcidentical, doubling~

halvesP, and iltdVCSU.
3 Changesin Ymcales u, but does not affect IL. If all w am identical, doubling y

dalblcs u.
LfthCW (ai,~i,fi)h Mtk UIIM f~dl CX~SIddiffCfCnt p~=ChWl&S WC
made fm each expert, the relationshipsarc not so straightfaward.

~*@Ba~tiu~ cb@gkdtis~ wmnWdyq~nt
fromdlcirfmldasorfrancakubom . A rturc imckpth investigationfollows.

Investigating the Correlation Structure

Becausethe M rmtimd cumins a uniquefeature qmMying the ccmelationstructure
amongcxper& a _ investigationammpted to understandthe effect of this structure
on the smndard&v@on of the aggregationtm.an.

A simplifiedsawturc of the M comclaaonmatrix, P, bed on a common correlation p
among all expts, has the followingform

P=p~lt+(l-p)I

where superscriptt is the vectm Uanspositicm,~ is the vcctm of all 1s, I is the identity
mauix, and theoffdiagonal tnarnx clmcmts arc all quid to a common value p. This
C~ VdM Ofp is a S- C= f~ this illVCStigti~. Ill general, Sll ~ijSmy IIOtbC
the m,

SortEinitial calculationswere nuk using the LS mthod where the ccmclationmatrix
wagchanged while the * pararlwtcrst’crnainalfixed as:

~ a -0,0,
aup = 1.0,
ally= 1.0,
all expert stmlard deviation estimates, s = 1.0,
and CXpC1’tman cStit’MtCS,m = (-20.5, -22.5, -23.8, -22,9, -19.2) (Table II).

These ~ vducs cmcapnd to the case where the experts’man estimates arc not
adjustedfm any Ication cxscale biases, ad their standarddeviationestimates arc not
resealed.

The IS standarddeviation values, fw this case, increasedas the value of p increasedus
indicatedin Table III. This patterncan lx explainedusing basic varianceIulcs where an
increasingpsitive comlution armmgvariablesincrwMs their combined variance.



TABLEIII
CORRELATIONSANDLS STANDV-RD~TIONS FOR CONSTANTEXPERT

n
0.00 0.45
0.10 0.53
0.25 0.63
0.50 0.77
0.75 0.89
0.90 0.96

*tiw*timhe~~*mmMdqud,&MsmM
deviation- not * a cmmotonicfuncticmc#p. To mmt decision makers this phenomena
is countcrintuitivc. I% the case in Table IV, using be st.sndad deviations fhm the
NUREG 1150 example in Table II, s = ( 1.3, 1.4, 1.4, 0.7, 1.6), the LS standard
deviation hwreascsfm increasing valuesof p until p =0.5 and then it decreases.

TABU W
CORRELATIONSANDIS STANDARDDEVIATIONSFOR DIFFERINGEXPERT

VARLUWES

0.10
0.20
0.40
0.50
0.60
0.80
0.90
0.95
0.99

u
0.49
0.57
0.6?
0.69
0.70
0.69
0.58
0.45
0.33
0.15

Ike reason fm this changing relationshipcan be foundin the formulafw the variance in
the IS IIEduXk

where tk (iJth d-t C#z is p~~ sl ~ Sj. Following the s~tlut of the correlation
matrix above,Z can b expressed as

where YS is the Ha&mard -t of y ands and D is a diagonal matrix whose elements
arc &Q. Ttw inverseof z has this same form,



ffz%=* ~ (6i~)2+~
1 +(n-l)p

r> o
i

where
i=~wn

i

and n is the number of experts. If p <- l/(n-1), then the ca’relation matrix is not positive
definite. It is possible fm exprts to be negativel comelated Not much attention is paid to

&.&thispossibilitybcause negativecmeladon is “ d to ex lain and imerpreL A decision
maker add mistakenlyctmstructa curelation mucture Lw ‘chis not positive ddinitc.

Assuming the variancematrix is positivedefinite, then differentiatingthe invemeof the
variancewith respect top gives

*~16 =- (n-1) S;+ n(n-1) ~——
* (1-P)2 (l+(n-l)p)2

where

s; - ~ (&52/(rl-1) ,

which is the “samplevariamc” of the (6i). ‘Ilwdifferentiation above corresponds to
findingthe maximumumertainty.

I% thCCU Wk h ~i ~ d C@ to 1.0 (e.g., wk~ %,S~~d pi ~ dl 1.0),then
S# is 0.0. The conditions comespd to Ttile Ill calculations where the standard
deviation WSSan increasingfunctionof p. Because the (~) depends on the Cxpell’s
s!snckrd deviatiouw,(Si), there is no reason to expect this to occur.

The expression fcxh LS variance is

C#- (~%-’fi)”’

~ it ldlXCS, fff ~~~~~W ~lld to OllC,to

u2=[l+(n-l)p]/n .

Substitutingvtuticmsvalues
deviations) as in Tabk III.

for p and n=S, this expression gives the variances (snd standard

FWh C= Wk d] ~ ~d pi ~ 1.0, but tk si values, as given in Table II, are ( 1,3,
1.4, I.4, 0,7, 1,5], then the variance expression becomes

9



FCXti~ tkVd~of5i~ (0.8, 0.7, 0.7, 1.4, 0.5), gitig a 6 = of 09 Md 5
stand8rd&via&m (S8)of 0.3. Using thew values for tic various correlations, the above
aqmsaioafcwtheuwiance gives h threwstandad ddations listed in Table lV. The
~&_eq~fibm_p~hTableN~fmtie
typcsofcascs inthatmbk.

l%e c-s developed in this subsech he~ in the understandingof how the.cadatmn stwture relates to the IS stmdard devianon. Earlier in the IXEthcxidesmiptions
secticmscKUofthcrelationships of theothcr pammctm tothe LSrmanand variance were
Mmioned mp

T
of this hi is to go kyomf tke parametric relationships and to

addressthcissues mgbbdmawttimvdustiof~tigi~
perfbrrmulcctothatofotherrnctho&

V. THE VALUES USED IN THE STUDY

In the sensitivitystulies and simulationdesigns describedMow, parameter values are
estixnatcdinetwhofthe fourmcthculs. Tocomparcthc pcrfomnanceof each rmthd some
basis fix cxmparism is rquired. In this section, a set of “mual” parameter values is
established. In the followingscztions, the abilitim of the methods to recover the actual log
failureratearccxamincdovcr amngcofcimums tmcez%called “ca&Ks”.

‘Ik * bg failurerate, 0, is set to -20.0, well within the range of expext-to-expert
values (’hb!ell). W~-mfmti MmMa, ~,y, mdp, m@wnin
Table V. l’he values f= a, whichcomxts fm location u shift bias, were chosen to range
from -2.0 to 2.0. Thisrangecovers fourordersof magnitude. The Bvaluesalsochange
k expeds -s incombinationwiththea values. Valuesfor Pwerechosenacrossa
namwcr ran= so thti the cmtMrd a, ~ eikxs would not prcxhxe severe chsngcs over
manymkrs of ma~itude. ‘flwYvalues werechcxunto & greater than 1.0 for inflating
the Staluimd “dmahons, counteringthe common Un&’estimationof the vaxiance. Were the
dwkion maker to ~ omniscient and know these actual vahs, the LS aggregatedopinion
wouldhave a m-an equal to -20.0 ad the perceivedstandarddeviationu wouldequal the
actualsti CkViatlm.

TABIX V
ACKJAL VALUESMIXEDVALUESFOR Q 5 and Y

~A E Y Q
a -2.0 0.0 2.0 .1.0
P 0.925 1.4 1*3 1.1
Y 2.0 1.5 1.75 2.5
m -20.5 -28.0 -24.0 -23,0
s 1.3 1.4 1.4 0.7

E
1.0
1.0
1.25
-19.0
1.6

10



‘Pij YIYjsi sj. Using

hM*~&mofti N&, titimti-amti tie~om*Uti
pammacm ~ to ruxiving the cx~’ man and standad deviations. His values for
thesc~ti~thch~~dl=prts. A&iaion_whoisnot
well infamcd aboutdifkrerws %twcen his experts may k pxmteto this. “llteactual
VdUCSccdd also be cqud across the CXpCI’tS,but experience @Ookcrand Meyer, 1988)
imikatcs rhat this is very unlikely. ~crcf~ sane&the sensitivitystudy calculations
(~S) W~ UMdCUSiJlgkkltkd VdUCS(dCXiSiOn11.MkCdSCSthMtCS)for ~ & and y ,
acrossallcxpcm.s **ms-ms mwti-mvduMhtmqud
acrossexperts were rxwk using the values in Table VI below.

TABIX VI
EQUALACIUAL VALUESFOR Q & and Y

MamMal
a 1.0

P 1.2

2
1.0
1.2

1.0
1.2

4
1.0
1.2

5
1.0
1.2

The values for ~ & and y were chosen fiorn values in Table V. Specifically, the
valuesarc in the middle of the ranges listed in Table V. They should, therefore, be of the
Ordcrdmtackcision makcrmightchoosc.

VI. THE SENSITIVITY STUDY

‘Themain purposeof the sensitivitystudy is to quantif the effects that an imperfect
ddecision maker haaon the aggregationprocess. Three “ cmnt mcrhcxis(U, SW, and

EW) arc directly compared in this study by examiningthe efkts of the decision maker’s
-~ -ti~s ~ ~~efinal aggregationmeanand varianceresults, compared to the
scttd VdUCSestablished

Ths Lindley and SIngpurwalla Method

The first sensitivitystudy fmuwd on the featuresof the N rmhcd The basic idea
behindthe decision maker estimatingall the paranwtcrsis so that he can adjust the experts’
meanand uandard dmciathmescimatcsin an attempt toestimate the actual means and
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Standaddmiatkm ~ idea h’fUIShtCS m th i(kd sitdOyhu& ~d5eckicisimaker’s
ewbates oftkpammetmuansfamsthem~’~
dcVkions)into thc~lwtandifsv*. The runs were set up such that when
theckCisionmakr s@fklthe psopuparmma% the resultingvak of the aggregation
meanealMndt hcprcck41v&i+nccwolMlEdHPecMed=Ud Values,e(”
20.0), and the amapmhn . ariancc (=0.66).

~wayd~g:kt iwk~~gtitt iestiwsmtidd
bytiex~, ~ma~ofatid ad P_~, ~wmmda
enor deviation, e,

m=aa+~ae +e .

Ratherthan designinga simulationconstructingexpertestimates based on the almvc
fmrnulaswith the random am component,the aggregationman and variance can be
knmd using a ncmruddisuibution that is not conditionedon this random error component.
This unconditionaldistributionbased cmthe Theorem 1 ( Lindky and Singpurwalla, 1982),
gives the aggrcgalkmlman estimate,~, distributal normally with mean

and VIU’iMICC

whm the suprwaipt “a”&mtcs the actual vectcwor values of tk pamnmtexs.
M tk idd x Wk tk &iti~ tlUkWCShMCS u+. ~~, w md [Pij]=[pija].

the agpqpuion mean rcdwcs to the value of o and the variance of that man rwiuccs to the
familiarVariancxCx

&
ion of l/@z-lB) from *m 1(Lindley and Sin urwalln,

1986). Fcwm 7casa, die aggrcgatodmean and standarddeviation can iffer
substfmaallyfrun Mtual values.

TIMactual va.ks for the paramtcrs usd in the sensitivitystudies am established using
the valms fmrn the example m tables I and 11as a guide. The values fm thed~ision
makfs estimates of the parametersare given in tk section belowdescribing the design for
the sensitivity study mist

The Self Weight Method

To compare the resultsof the other rrdmds to the LS methd, the unconditional
distributioncm be structural to mscmble the self-weightaggregationmethcxiused hy

12



Lawrcnm Livulmx’e National Labcmmy. Tkrcfcxc, sane of tie N tuns made using the
uncaulitional ditmibutionwith the variouscombinationsoftk M
I@ckm@*mh& tiw-wu@tfm

pammter estimates also

wh~tiwi~~ “m (weights sum to 1.0)sclfwcights pmvidal by the experts and
aarcthe “emmatcsmbytlwexperts. AMoughtheaigindxep atdidmtspcify
one, the Varhnce of tlus Welghtcdm could IXestimatedby the standard formula for the
varianceof a weightedmean with normalid self weigh% w~,

4+(B)= w\Z(m)w,,

wherez(m) is the vmiancemarnx of the mean, havingthe fmm of a diagonal matrix with
(si2) elmts. Here z(m) is a gcneml notationfa varhmcetodistinguish it fiumthe LS
v- z

hti~mtititif i~wsr=u=~h ntiuantitiond
aggregationman esdmatm has the f-of the weightedmeanestimatcwwhere the weights
are

wheread am theelcrmntsofz-l. Thevariancefor the ~gation mean is the
unconditionalvathncc fo!mula

titi Nms, timw**i3mti -~timtiwei@timm
cases. ~fom, both rmhods can be directly compamd using these oornmoncases.

The Weighted Mean Method

The wcightd man methodori ‘nallyptqnxid by EFRI, was later modified in a
tsecond report (TuMuire, et al., 198 ) such that all the experts were given equal wci hts.

L‘llmrefme, thi9maiificadon was chosen fm U* in the study and can arisen of met s,
makin them rncthtd s rcpmscntativeof the equal Wciglmm

k
d for aggregating

multi
&

Utima?m.
euscofcqual weights isapopularmcthodfw

T
gating expert estimates (Seaver,

1978;Winkkr, 1986). One of the main argunwnts for c oosingoqua.1weights is that the
analyst a *s&n tmb ting the aggregating often has no informationor no reason for
choosing the weightof- expert over another. Anotkr mason stems from the fact that
minor chungcsin weightshave little imput on theresultingweightedmean; howeverit can
affect the pemeivedvariance(Meyerand Bcmlcsr,191 ).

In the cases run using the unconditionaldistribution,cxdyone combinationof the LS

1’
ara.nmt~ comespondsto the U@ weights cm. 7 i,.ti tk results for this method wc
imital to only that me case. How-, the comparisonamong the three mmhods is slill
feasibleeven if there Isonly one case for the equal weightsmethal.

~twcmis whdla-O, ~=1, plJ-Ofmi@j and M=l/sl, makin E-l such
tthat the weights in the aggregationnwanarc qul, ‘Thiscase correspondsto c situwion

where the derision maker makes no locationor scdc adjustmentsto the experts’mcnns,

13



andhcbqqlcn stoscloctf imhlcsthatrcscak thcirstatcd vuianccs to 1.0. These parameter
Choicesaremtvcry likclyncxdo thcyhavea reasonablefoundationCX~ptto achievethe
gd d Wcighdngthe Cxpcrtsequally.

VIL THE SIMULATIONS

The Empirical Distrfbutlon Method Simulation

Usingthemqirkal disaibuticmsof M experts’ “cshmatcs fmm Table I, a simulation
was &signed m examine the usc of this mcthai. his simulationdoe. not have a direct.
comcctm to the otkr three tmthds m to the unconditionalsensitivity studiescomparing
therm

TIMcmpirid dishitxuions of the experts are bad on a setof fiveestimatesfmm the
experts: an absoluteminimumC8-k (cumulativeprobabilityof O.0),an absolute
maximum “cstmatc (cucmdadve@x4ility of 1.0),a middle value (best guess),an upper
tail valw and a IcmmW value. lltcrc is an ongoingddmtc abut what Pcrucntilesshould
Campondtothctwotai.lcwimatcsandmiddlc “~mp&M*, 1991). some
suggest that the cxpat’s best m middk estimate rcprcscnts a mean value; others suggest
that k qxcscnts the maiian (SOthPcfccntik). Sam suggest that tho tail values fcprcscnt
the 5th SIKI95* pcrccntilcswhik som studies suggest that the tail values rcprcscnt the
4(hh and 6(M pcmemtiks. ‘Tlicsimulation is &signal to investigate the cfkcts of changing
these~ntik kvels fof the tail and middk valu~ In other wds, the simulation
cxammcs how m&pccUika60nof the pacentile levels affbctthe rwlts.

The Self Weight Method Simulation

Adwr simulationwas dcsigmd to investigate the effcas of changing the experts’
weights that was not tied to the LS method. In the tiginal applicationof this method, the
weights wae integer values b 1to 10. llmsc values wcm then normal.izcdso that the
Cxpcrts’weights Sumrnd to 1.0.

In this simulation,the weight VSIUCS(1 to 10)were simply cncratd b two different

t$J %a*B
#robabili disuibudons. ~ first was a skeweddistribution igurc 2) which placed

cr pm tnhacs on the higher ratings (69) and v- littk potability on the lower
ratings (14). Tlmrcamn fw this cmrrwsh the ~misc Thatmost cx

r
should b able

to rate thcnMlvcs ucding tn their expcnisc, whch should bc on the iqh side of the
scale. However, there man tier factors to consider conccming self we@s such as the

iexpm’s own ck~ of con ckncc, his actual kvcl of expertise versus his pcrccivcd level,
and his cxpcrtisc relative to mlwts: All of these f~tors make it difficult to specifya
distribution for rhc weights,

F
y with no guidancefrom the Mcraturc, To provide an

altcmativc, the ~ proh “ity disrnbution was a unifcxmon the integers 1to 10
(Figure 3).
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VII. DESIGN OF TNE SENSITIVITY & SIMULATION RUNS

There wfc five diffatnl sensitivitysttiy and slmuhitlonruns mde using three
different FORTRANcmlcm,Using the first of these caks, the qual weight, self weight
ad LS rrmtlnxl.swerecanparal udn the same cases and the same nctu.nlvalues, The

OllrJcases and sets of Km,lQ.1vduca f thrc4Mfemnt
Y

s of runs: (1)equal nctualVIIIUCS
(TN-deVl) compared to the decision maker’sequal cst rnatcsof the paramcIcR,(2) mirncd

Is



add duCS (Tabk V) _ to tk CkCiSi~LUDktiSCqllldCShtCS Ofthe parameters,
and (3)mixedactualvalues(’I* V)wmparcd to thedecision maker’sestimates based on
small dcviabns from the euxwdvahcs . Using the second FORTMN code, the self
weightsfor that rncthai were generatedffan both the uniform and skeweddistributions.
using W thid FORTRANcode ti w~~ ~~~ve dis~~ti~ ~~CXM of ~C
exputswcm uscdtofman aggre@mmd *cstimatms. ‘IImsefive different
runs arc further dcscrbd below.

Run 1- Equal Valuea

Them s 301 cases run involving the EW, SW, and I-S mcthcxis. The p81’81tlCtCr
values used am in Tabk VI, and the cases am cunsuuctcd fi’omcombinationsof the
paramcm in Tabk VII (the 3CUIcasesequal the pssible combinationsof five a values,
five P values, four yval~ and three P matrices) plus the single case for equal weights.
?-kmthe actual values fm the paramtcrs am constantacross CXPS, and the decision
1nakw estimates the sanMvalues fm all the experts ~able WI).

TABU VII
m DECIS1ONMAKER’SEQUAL ESTIMATES FOR m f!,y, and P

& JL .
Ls C!ascs -2.0 1.0 0.0

-1.9 1:0 0.5
0.0 1.2 !:: 0.9
1.0 1.4 2.s

1.5
Equal weight ~! ● 1.0 0,0

●=(0.78, 0,71, 0.74, 1.43, 0.64)

The case of a = 1.0, ~ = 1.2, y = 1.5, and p = 0.0 ccmqxmds to parameter choices by
a perfectdecision maker. All the odwrcases corrcspnd to p~ choicesof an
imperfectdecisionmak

Run 2- Unqual Vduea

There were 301cases run involvin the EW, SW, and LS methods, The utual values
kfor the paramtcrs arc in Table V, ad e cases arc constructed h all possible

combinationsof emknateain Tabk VIII (300 cases) plus the single ca.wfor qual weights,
kc the actual valuca fm the parametersarc mixed values, and tie decision maker’s
estimates the sanw values for all the experts (Table VIII),
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TABM VIII
m DECISIONMAKER’S13QLJM-m~~ FOR G h Y, ~d P

J& L.
Is cases -2.0 1.0 O.c

-1.O 1:0 0.5
0.0 1.2 H 0.9
1.0 1.4 2.5

3.0
Equalweight ;I b 1.0 0.0

*={0.78, 0.71, 0.74, 1.43, 0.44)

Run 3 = Small Deviations

Tke were300casesrun involvingrhc EW, SW, and IS methods. The iwtualvalues
for the parametersam in Table V, and the cases arc constructedfrom the combinationsof
the parametersin Table LX.Here the exprts’ mud values f- the paramtcm arc mixed
values, SrKlthedecision makerCstimam the sam values fm the experts that arc almost
identicalto the mud values (TableIX). In cwh ~, the ~ for only one parameter,
for only one expert diffkrs from the actual values. Here, the decision maker is nearly
perfect in his estimaticmptxcss - an unrealisticexpectation.

TABLEIX
THE DECISIONMAKER’SSMALLDEFLATIONSFROM

THE A~AL h41.XEDVALUES FOR a ~,y,and p

A E F Q
-1.0 0.0 2.0 -1.0
.2,0 2,0 -1.0
-2,0 ::: -1.0
-260 0,0 ;::
-2,0 0.0 2.0 -Y::

1.2 1.4 1,3
.925 1,2 1,3 1:1
.92S 1.4 1,2 1,1
.92S 1.4 1,3 li2
.92S 1.4 1.3 I.1

2*O 2,0 1.7S 2.5
2.0 1,5 2,0
2.0 I,s 1,75 ;::
2.0 1.5 I*7S 2,5

Pl]= (O sO,m 0.5, or 0.9! for al! irj,

E
1.0
I ,0
1.0

(!):;

1,0
:.0
1,0
1.0
1.2

1,25
I,2S
1,2s
2,0
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Run 4- the Distribution Seif Weights Simulation

‘T&e vvm lMXlsimu.latkmsamplesrun on the SW method where the weights were
gencratctlh a skewed-shapeddisuibution(I@urc2) and l(XIOsamples fium a uniform
distribution (Figure 3). The structure of this simulationdid not use the IS framework.
The wei@s S ranckmlychotwnvalues fmm the 1 to 10 scale aced.ing to the two
distributmns. TIMwe$hts were then ncxmalizedas in the cxiginalmethod. W weighted
aggregationtmanand ussmndarddcviation Wcrccakuktaia ndcompamdt otheactual
mean and variance.

Run S - the Empirical Diatnbution Simulation

‘nlereWae 3(M)- run on theempirical distribution Knethd. These cases were
constructedusing 300 difkent sets of cx~ distributions. The distributions for each
expert wem fonmd using the upper tail, low= tail, maximtuminimr ad central values
given in Table X. lle tail and extreme vaks are baaedon the e~peru’estimates given in
Table I, and the centmdvalues are bad on the ex~’ estimates given in Table Il.

TABLEX
VALUESFOR Specifying THE EXPERTS’EMPIRICALDISTRIBUTIONS

J!aluGLA B F Q E
minimum -23.9 -32.6 -20.0 -29.8 -24.0
lowertail -22.3 -30.3 -25.2 -25.9 -22,8
central -20.5 -28.0 -24.0 -23.0 -19.0
uppertail -19.1 -23.7 -20.6 -20.6 -16.6
maximum -17,5 -23.4 -17.2 -16.9 -14.0

The aqirkal chributions wereconstructedby radortdy assigningpercentile levels to
the two tail and k central valuc~ The maximaand minima values anchor the distributions
at probabilities 1.0and 0.0, tespdvely. Lhwarly interpolatingthe five points forms the
empiricaldistributions. The percentile Ievclfm the lower tail values for each expcn were
randomly assigtwl accding to a unifmrndistribution on the range 0.0 to 0.30, the
perccntik level for the u- td values from a unifam ranging b 0.70 to 1,0,and the
percentile level fm thecenamlvalue from a uniform ranging from 0,40 to OOd).The ranges
of the unifcmnswere chosen to cover the ranges sIJg~sfed by various SIIId i [“s (Kahnemun,
et al,, 1982), A singk case is the set of five expert chsuibutionsthat were tormcd by the
percentik asai nrmnts rmle at random for the two td and central values.

#Fcweach the 3(KIcsscs, the five expds distributions are aggregatedforming a find
combinal distribution whose(unweighed) mean, nmdian,variance aml percentilescan bc
used as summary statistics. To form this final distribution, vahm are sam led from the

rfive ex@s disbibutionu. These values arc combined accordin to one o two chosen
aggregationestimator, the mean and the median, in mher wd s, a sample is a set 0!’five
randomlyselected values,one from each expat distribution, The mean and the rncdinnof
the five values {scakulatd. ‘I?iissampling wasdone W) times reducing a fin:d
disuibution fcwthe man and ● final distributionfcutie median, L values of Ihe two
a~regation estimators (the mean and rtdian) were taken as the central valuesof these [wu
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final diatrihtiom. Likctisc, standarddeviationsWCIEcalculated frcm these two final
distribution pdmbility intervals (not cmilhcc inmvals) for the pemxivedmean were
Calclllatalusing the percentilesflun the final di.suibutions.

Measurea of Comparison

AUthe sensitivity std.ks and simulationsused thee different UMSufes of compmhon
to their Icsp@ive mud value sets. m first w Hums are simple deviations: the
aggrcgatmnestimate fcxthe nwtlml from the valueof 0 and the estimatm%standard
deviation “mtlmatcfkml thctistandal’d dcviadon

The valueofn varies from case to case. This comparison is based on the difference
betweenthe case-spaific ~ivcd stardard deviationand the case-specificWtualstandard
deviation

The third masurc is bad u n how well each mthod covered the value of o using
rprobabilityor confidcmx intmw s calculatedfium the eslimatesof the aggregationmean

and its Standmdckviation

wherez a percentile of a Fhnmal (0,1) and wz) is the correspondingcumulativedistribution
function. For exampk, when a 90% intmal is calculatedbased upon the estimates for a
giventmclhO&in what pemcntagcof the cases run does that intuvai cover 0? The expected
answer should & near $M)%For each mew, five dWrent sized intemls were
calculatedfor the SO%,65%, 80%, 90% and 99% covcrages. The results are given in the
salon below.

VIII. RESULTS

Comparison to the Actual Valua for all Methods

The tmasums of comparisondescribed in the previous section produced the results in
Tabks X1and XII. The vaks in Table Xl are averagesover all the cases. The exception
being that the EW values repcscnt only one cu.

TABLEX1
DEVIATIONSFROM11~ ACI’’UALMEAN(e) ANDSTANDARDDEVIATION(&)

FORTHEMEANSANDSTANDARDDEVIATIONSOFTHEMETiKXX,

I..s/l -20.1 -06I 1.1 0,5
~s; -20,3 -0.3 1.7 O*9

-20.0 0.O 1.5 0,7

sw/1 -23,0 -3.0 0.7
sw/2 -23,1 -301 ::;
sw/3 -23,3 -3,3 H ().()
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TABLEXI (continued)

Ew/1 4:.: -3.0 0.7
Ew/2 . -2.9 ::? 2.9

Sw /4 &w -22.s -2.5 0.6 -0.2
Sw /4 Unif -22.5 -2.5 0.6 -0.1

ED/5nmln -22.6 -2.6 1.5 0.7
ED/5maiian -22.3 -2.3 1.8 1.0

Wkrc thcnl=a:l-s) refer to the type of fun mdc;.

z
of the 5 experts was used as the aggregationcstimam,

mdianisthe “ of the 5 C- was used as the aggregationcstimatm;
skw is self weights generated from a skeweddistritutkm; and
unif is self weights gencramd* a unifmn distrilmion.

TABLEXU
PERCEM’ COVERAGESOF0 BY50.65,80,35 AND90 PERCENT IhiT13RVALS

lldldhmw!z?

Is/l 15.3 21.3 27.6 41.5
:;: 1::; 15.0 20.7 27.8 41.0

53.0 67.0 73.0 83.0 92.3

sw/1 0.0 0.0 13.2 21.2 53.9
sw/2 0.0 0.0 13.3 20.0 46.7
sw/3 0.0 0.0 0.0 0.0 50.0

sw14skw 0.1 0.2 0.4 0.8
sw14unif 2.2 3.6 5.s 8.7 2::;

FD/Smcan 0.0 0.0 0.0 45.0
ED/5mdian 0.0 0.0 9.3 5::! 98.3

The avm@ng ptxcss in Table Xl rquires careful intcxprctation,especially for the
aggregationcathnatcxs(means). For exampk, the LS run 1 has a veiy sma!l overall
deviation *0; howmfcr,variation in the grcgationmcdm over the 3(N)cases is quite

7large. The highest case was -10.0 while the owest case was 31.0. The low cases
occurred when a was the largest (21’)(reducingu) and whenp was the smallest (0.8) (;11s0
rducing W)fw the various values of yand p. The high cases occuncd when the correlation
was the highest (0.9), a was the smallest (-2.0), and Bmade no adjustments (1.0) for
various values of y. The SW run 1cases all have the same aggregation estimator (= -23,()),
This results km the fact that the SW cases arc mstrictcdto combinationsof a, P, y, nnd p
such that the resulting weights arc normali~. The 75 cases for the SW method, where k
weightsarc automaticallynamalid, correspondto LS cases where p = Oand p 21. The
EW case is also rcsaicmd and misses the target mean. The standard deviation, although
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somewhat larger,is not as large as might be expected. Recall that it is a composite of two
sourcesof variation that one might suspect would pruduce a large value.

For run 2, again the M ov&dJ & is on t.ar&t with 0. However, again there is a
very large vmiation in these mean values ranging fmrrt-31 to -16. The 75 cases in the SW
method have means with a much smaller varianceranging from -22.9 to -23.3. These 75
cases again ccmespondto those wherep = Oand ft21. The EW case here does have a
very large standarddevitiort as might & expuxd km ●% way it is calculated.

By construction, thc -I deviationscases (run 3) for the LS method have means that
am much less variable, ranging fimm.-23.8 to -16.7, and their overall average is e.
Althoughthe variation in the 110mans applicableto the SW methodis also this small, the
overall rman fcwthese cases is not on target with 0. These 110cases are defined km
combinationsof a = -1 or -2,13= 0.925 or 1.2,y = 2.0 and p= 0.0 or 0.5. The EW
rrdlod is not applicablehere.

In run 4, where SW mcthcd weightsare generatedfrom two different distributions
instead of &ing defmul in termso; the IS cases, the ovemll means are not on target with
0. The overall means fkornthe two differentdistributionsare ~earlyidentical, indicating
little effect from the different distribution(skewedversus uniform) used for the weights.
(This is not surprisingkausc for any distributionwith ‘dependent, identically distributed
weights, the expectedvalue of the notmalizcdweights is l/n. The result is qua.1 weights
on the average. Only the variance shouldbe exrxcted to change.) The variation in the
means for the l(NX)cases is also small, ranging from -25.6 to -19.4 for the uniform
distribution and from -24.5 to -2G.3for the skewed distribution.

The means and mediansfmm the 300ED caws in run 5 bh differed from the target e,
The mean values ran cd from -23 to -22 and the rmdians from -22.9 to -21.5, indicating

fvery small variation or both ~; of estimators for run 5 cases versus the other runs.
It is not surpising that the oval means for mnnyof the runsmiswxl the targetvalue.

The EW method and run 5 weight the five experts equally. This weighting is not
conducive to hitting the target value bemuse -20.0 is not in me center of the five experts’
estimatesor their distributions, (This is not an unusualoccurrence because it wo~ld be
unreasonableto expect the experts’cstimatr.~or distributions to be exactly centered around
the actual value.) in addition,when them is d variaticw,for the aggregationestimator,
such as in the ED method and the SWrmtlti it is difficult to hit the target value, The
methods that can consistentlyhit the target value, such as the U method, are those which
either have large variabilityabut the aggregationestimator.

Makingcomparisonsof the overall standarddeviations is not as clear cut as comparing
to the target 0 Ixcausc d is W on the IS vwiation, Even so, the LS standard deviation
of the a~gation mean comparespomly to the target value, Ua. ~ ED method pruduces
standarddeviations that arc almuttwiceu~. The only methai that consistently hits the
desired stmdard deviation for the various r ins is the SW method.

The third measure of comparisonexamineshow well tlmconfidencemd probability
intervalsrover the targst H, Thew results are in Table XLIand are graphically
represented in Figure4 (except fcmtlie EW method).
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Figure4: TargetMean CoveraW Baaed on VarkmaSized Intervals

The covcra~s that one would hope to achieve shouldbe near the “desired”line,
Ideally, a SO%Intervalshould cow the targetvalueof -20.0 in SO%of the cases mn.
However,a decision makerusing imperfectparamtcr vaks can b seriously misled as to
coverage rates Intervalshaving perceived covcragcs of 95%often had actual coverage of
less than .S0%in this sttiy
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Even though the ~ m WU VCry ncsr -20.0 (Tabk m, that rcsuh was ObWiIIC-d by
Off-tar@ hi@Iin&rvSISCanCellingOff-~Ct bw intCrVdS.bw m VdUCS fm Other
tmtbds wac attrihmmbkto eqxrt opinions beingCOfMktdy pesaimktic.

~tib Tti~d Fl~4_ti-yofti =ti Mmtim
poorly in achkving b expocmdcoveragcs. Based * the results alreadynmtioned abve
regardingthc~misscs sndthcwiabilit yassmatd withthat~itisnot
Suqxking t!!* mtu’wls for the mahods exhibit poor Covelllgeof the target H.
*U-mbmcd*-tie~~gtia-tiiB
esdmatcdsumdard ~tmdthcc

r
makes no allowimcefcwthe possibility that

someoftlleinput~ could be “ghtlyin am, m thatthe expen.s themselves might
beim ectasagmup.

e Oa’dylmtildamisimuhkmcmbirdm dultmsclllb?csthe expectedCovcmlgcin
l@um 4 is the IS metlwcifm small&viadons. TheEDmcdmdusingthemedianestimator
ksktterfcx largcrsizd intcrvalse-). ‘Tlwtiicrcovcra es fhxnrunlandrun2

ffw~mtiy*ti,umtia~gwfamld2 aSW. llcporest
covcm csmfm*sW*wh tiwi@=_titi tiutifommd

Jskew distributions.

Comparison to the Actual Valuea for Correlation Effects

7hc results fa runs 1-3 fcwthe I&icmthai iwluck tluec dkrent correlation shuctwes.
‘Ilw actualvalues strwturc has off diagonal elements of the correlationmatrixequal to 0.0,
SIKitheCus runinclwk this smcturc plus smwusms where these ekmnts arcequal to
0.5 and 0.9.

Examhdngthemeasumsofmmparkn for the threedifferentcarelation stmcturcs
givestk folkwing xcsuk 1% runs 1ad Z the mans and standmddeviations over the
lGO-s f= -h ccmelatkmSU’UCWC & not ChangC as the MnXurc ChangCS. The

percentcovcrages fm the various interval sizes (50%, 65%, 80%,90%, and 99%) also do
M change with h diffa’cntcmrelation Smlctumk

Fmm3, ti~ti~cbge, htti~tiatims~ fi’om0.82 for
0.0 carelation to 2.63 for cmclations of 0.9. Also fcu run 3, the coverages fur the
various intervalsizes also chan as indicated in Table XIII. For each interval, the

rcoverage fm thecmrclation of .5 is ~ximatcl that listed in Table XII. However, the
IJcoverage for 0.0 correlation is muchtughcr,quit y approaching 100%. The mvera e for

Jcomlation of 0.9 is much lower, ap-hing the covcrages seen in the other mcth s.
Ilmrcfom, what the dmiaion mak~ estimams high cmeladon among experts (= 0.9)
what, in tru~ noneexis~ ~ coverages result even when he has ctxrdy estimated all
ww~sfw~ ~~ e- ~. ~ extnme sensitivity of targetcoverage is indicated

.

TABLE XIII
PERCENTCOVERAGESOF o BY 50,65,80,95 &90PERCENT INTERVALS

FORDIFFERENTCORRELATIONSINTHELS MEIHOD, RUN3

decision maker’s
~b S!p

0,0
%&

0.5 52 67 78 92 100
0.9 23 37 41 57 77

*Actualcorrelation is 0.0.
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IX. CONCLUSIONS

Conchsionsholnthcnsdtsoftkh mcasms of comparisonarc mixed and do not
indicakany~~as-thantib. AUmcthodsafc cxtrerdyscnsitiveto
impcrfectcdmamms ofthc~wkthcrkin Utscmmefbmlilcexpelts
thcmsclvcGm W kisiorl maker. Cov

z
rates f= J udlods arc also poor. The only

excc@On is wkn h inputsam ncariy Ccdycstimtd Md this is unrealisticto expect.
Scmminterestingconclusions about the lmthods were fourd based on the faturcs of

the %b.tiw=f= m worthmenticxli.ng:kw the mclhd hadlcs
unccminty, what asaumpdonsarc rqircd for use,

and what inputcsdm@ms are Kquircd for u.
llwlA_isthc adyonethal spdicaUyddmascs thecOrrclStionstxwXum

anmngthccxprt& ~&*kUtitiHa*,@ysLuwkWis
ab%gtiw ~ must csdmatc thatomrclatial ~. Studies arc lacking on

cstmmm citk in canuo41aJor realistic cmironmcnts. Lnthe IA runs,
thcmis—~kdiffelelwes in the resultsdepending upat which of the three
Cu’rclatbnsmmlmcs m Splzifid

Uncertaintyin M expend cstimamsishandlcd inthcnAodsbytwoways. The
vmiancecstimsm elicitalfbr uscinthc LSrmthdiscmcway. ‘llepcrccntik estimates
elicited and

.

~&
anpirical disuibutions inthe EDmcthod isanotkr way. The

two wcigkd n@tds aml SW) do not ~ggcst eliciting uncminty estimates fxum
thccxpcrts incithwf- l“hisisashcmomm g of these methods, Ss situations requiring
Onlyaptcstbatc ammrc. Uncutaintyis~tintheelicited damsmlthis
Uncamuyshould k-taiinsamcway.

Problem *in usingnm.hodsthatrelycmrestrictiveassumptionson thedata. In
gcncralpmblemsari=hnccrtain -csinthc+ l%re~pl~thcrc isabasic
f)robkmwithusinganysmddcaltcc

.%wf”dr”w--h-*”’-d gdcrc4idcntMlyti, tdsampepomsh manwidymg
/’populatxm. tcan k argued thatexpcrtjudgxmnts may not ~ an kkpcndcnt m identically

distributed
%!

k b ● popuMon. However, this indcpcnrknCCapplies m the method
of Samphng &es not pertainto the bed vakso As a corquencc, inckpcndcncc-
bascd inkrmwc abut the ppuktion fimmthejudgments may not apply. Anotherexample,
thecommm uscofthccentral limit q(which statcsthat thcsampkmcanis
Ssyrtpmblly InuTIMl)may m be appmpmc bcausc W underlyingpopulationcan be
highlyskcwd and the sample sks arc extremelysmall. In ddition to general
w ~~ SOUICmfhds (e.g. t.k M method) have assu tions, such as the mean

7mustbe nmnslly disuibute&whichmaynot apply. Aaa rcs 4 mcdmdsthatrequire
few assumptionsabut b data (e.g.,si,mulation-lmsd,da@asd, and non-parametric
ndwcls)arcnmcdcsimblefffu scinex

r’-mts::z==bz:of“distatcd” relative to reality. Fm examp , b
the expts, and ~gatcs them using a simulation-basedtechnique. The SW and EW
methods (b not requiredisbibuticmalassumptionson the dat&however, the variance
estimatesof theiraggregatedmeans do rely on the sanw sampling asymptotic tkmy thatthe
Ls mthd doe%

All the ~ mquim the experts to make eshatcs. Two require them to estimate
Sotlzmcasm ofuncamin tyhwiability as well. However,the LS mthod requiresthe
dCCi- tiff m Sdyw tOe~~k thfCC~thd ~&z V@tLXS Mid one additional
maaix fcx the experts. The SW mdicxlalsorequires k experts to estimate their own

$
wci ts. ScmEsttdia have indicatal thatexperts arc not good at estimating uncertainty
(K ncmsn, et al., 1982),ad sane have suggested that ex

r
arc not good at estimating

self wcighta(m the weightsof others) (Bcrnrcutcr,et al., 1 89). Tlurc is little evidence to
@ict how well thedecision makcsn estimate the pammctm ncukd for the I-S method,
One can only ~ulatc thatthe tiision maker’sestirMtitMof theseparanwtcrs wouldnot
beanyrrmwacaratc thm his ability to estimate variability(which sties have indicatedis
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not done well). Also, the decision maker is presumably less knowledgeable thanhis
expertswhich binds his estimation ability. ‘Tkreforc, any method thatrelies heady on
csdmatcS(* thanthe estimates of the target quantity) is intrmlucingadditionalsources
of potemtiall *C variability. As a umscquncc, a “simpleris better” philosophyhas
developed. L phikxmphyhas led to the conclusion that W@ wCi@Sfor all CX@S
might be rl.~answer. However, the results of this study do not necessarily supportthe use
of equal weights. While keeping additionalestimations to a minimum is reasonableadvice,
for analysis purposesit is beucr to haveestimatesof unmtainty on hand.

Basedon these featuresof the tmhods, the conclusion is thatall the rmhods have their
advantages(case of use, Characmizinguncemdnty, and accounting for ccmelation) and
disadvantages(restrictiveassumptions, imperfect inputestimation, and pm pcrfosmance
in the cases run)for use in aggregatingexpertjulgtmnts. The followingrecommendations
suxmmrkc cheresults of this study, focusingon thebalancebetween these advantagesand
disadvmtages. If enough information is known abut the experts, and if the target quantity
of interest (failurerate) is thought to be normslly (x logmmmlly distributed, the LS method
can & usai with decent results. If bothof these conditions are not satisfl~ then an
alternativemtlmd is the ED using the rrdian aggregationestimator.

At the &ginning of this study, we did not ex~t any one of the chosen me~s to
emerge as the &sL ~ a proven x, rrethod exism it would probably have been
publicizedby now. The probktm encounteredin anal zing expert judgments are
numerous complicad and frustrating. Research J practical use of proposedanalysis
~ iSSpSfSC.ThC* iLwifkh prOpcrtiCS11-SSWYto SU~pOl”tboth StlitiStiCaland
cognitivethcuy. Oftcn the theories confliq e.g. the data are distributednommlly for the
analy~ but cognitivestudies indicate rmn-normality. As a umscqucnce, guidancefor
handlingthe aggregationproblem is given pri.mady from the heurctical side and not from
the ex@mntal or the experience sides. In reality, there is a decision makeror analyst
who is fatal with providingaggregationestimates fm documentationorjusnficstion
pu.fposcs.

This studyfocusai on a real example aml the u~ and comparison of four different
typesof mcthds tit havemccival attentionin the litframrc. ‘l%isstudy provides insights
into these rtmhals, and the decision maker or analystcan gain mm guidance km the
results.
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APPENDIX - NOTATION

bias ~ VCCtOrCStilIllltCSin k Lindlcy/Singpurwalla ~) method
-- V- esti in the ~ methal scaling the expcn’sestimate of the mean
pammetcrvectm estiuwes in the IS rnethcd *sling the expert’sestimate of the
standarddeviation.

estimateof the conflation Ixtwem experts i andj
the xtual valueof the failurerate
the actual value of the log failure ra~ (-20.0)
the aggregationcsticx of e
estimateof the vtiancekowhmce matrixin the LS method
thccaTelaticxl matriXinfhe LSmethod
standarddcviafion of fheaggregationmeanestimator.
the expm’s estimate or &st guess of the log failure rate
theexpeds estimate of the standarddeviation
the actualvalu of the standarddeviation of the quantitybeing estimated
fheactua.lvalue of the biaspammetm inthe LSmedmd
the actualvalue of the standarddeviafion scaling parameterin the LS nmhod
rheactualvalue of rhescaling parsumterfor the expert’sestimate of tic mean in the
Ls method

tie actualvalue of the correlationbetweenexperts
tie actualvalue of the variancdcovarianccmatrixin the IS method
indicates transpowof a matrixor v=tcx
indicales a vectm
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